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Behavioural needs are highly motivated actions critical to a species survival
and reproduction. Prolonged restriction of these behaviours can lead to
stereotypic behaviours (SB) in captive animals, and this is particularly
common in ungulate species. While risk factors for SB have been suggested
for some ungulates, no study has integrated these findings to identify which
aspects of ungulates’ wild behavioural biology and captive husbandry are
potential drivers for SB across this clade. We collated SB data from 15 236
individuals across 38 ungulate species from 95 sources, and determined
species wild/free-ranging behaviour from 559 additional studies. Baye-
sian-phylogenetic statistical methods showed that ungulate behavioural
needs relating to foraging and mating are particularly affected by captive
environments, with promiscuous and browsing species showing the greatest
prevalence of SB. Concentrate-only diets and lack of ad libitum feed sub-
strates were also associated with high SB prevalence. This study identifies
which ungulates are better suited to captive environments and which
species require targeted husbandry, enrichment and breeding protocols in
order to meet their behavioural needs. Our approach of applying Baye-
sian-phylogenetic inference to factors influencing SB within a clade can be
used to identify other intrinsic and extrinsic risk factors of reduced animal
health and welfare.
1. Background
Stereotypic behaviours (SBs) are repetitive behaviours induced by frustration,
repeated attempts to cope, or central nervous system dysfunction and are
widely reported across a variety of captive species [1–4]. From an animal wel-
fare perspective, SB may be indicative of current and/or historic exposure to
chronic stress and reduced welfare [3]. These behaviours may also impact ani-
mals and their keepers in other ways, for example by reducing the productivity
and value of farmed animals [5], reducing performance in sport and companion
animal species [6,7], reducing reproductivity in captive animal species [8] and
causing clinical injury or trauma to the performing animal or conspecifics
(e.g. tail biting in commercial pigs (Sus scrofa), feather damaging behaviour in
commercial poultry [9] or pet parrots [10]). It is critically important, therefore,
that we understand the underlying causal factors of these behaviours. The
consequences of not reducing or preventing SB in domestic and captive
environments can be significant from production, performance and (most
importantly) welfare perspectives.

Behavioural needs are highly motivated behaviours essential to a species
survival and reproduction in their ancestral and current wild-ranging environ-
ments. Restricting the performance of these behaviours for extended periods
thus compromises animal welfare [11]. The majority of animal SB appears to
result from the inability to realise these behavioural needs and, over time,
the persistent frustration may lead to changes in the central nervous system
[1–4]. Although several factors relating to the wild behavioural biology and
behavioural needs of single species have already been proposed as key drivers
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of SB, only a handful of studies have examined the develop-
ment of SB across a whole taxon. A seminal, systematic
analysis of the natural behavioural biology and SB perform-
ance of zoo-housed carnivores revealed that home range
size and daily travel distances in the wild were the most sig-
nificant predictors of SB in captivity [12,13]. This challenged
the common assumption that the frustration of hunting-
based foraging behaviour was the key predictor of reduced
welfare in these species. These landmark findings suggested
that assumptions regarding SB in other taxonomic groups
may be inaccurate, and may ultimately impact the welfare
of animals in captivity via unsuitable enclosure designs
and inappropriate environmental enrichment protocols.
This approach has reframed SB research and has inspired
cross-species phylogenetic comparative analyses of captive
welfare and/or SB in primates [14], carnivores [15], ruminants
[16], parrots [17] and lemurs [18]. These comprehensive, cross-
species approaches to understanding SB are of critical impor-
tance, particularly for taxa in which these behaviours are
prevalent and/or understudied.

Over five billion ungulates are kept as livestock [19] and
large numbers are also kept in zoos and safari parks
(although the number of individuals in these collections is
unknown). This makes ungulates one of the most commonly
domesticated taxa. Ungulate species display a range of SB,
with oral forms being most common [1]. Examples include
oral SBs such as tongue rolling, bar biting and sham chewing
in pigs [5], and oral and locomotor SBs such as crib-biting,
weaving and box-walking in horses (Equus caballus) [20].
Data for exotic ungulate species are sparse [21], with large
inter-species differences in the type, prevalence and fre-
quency of SB. For example, it is estimated that 80% of
giraffes (Giraffa camelopardalis) and okapi (Okapia johnstoni)
in captivity exhibit at least one form of SB [22], yet in a
survey of 25 collections housing banteng (Bos javanicus),
only two reported any historic occurrence of SB [23].
Although the potential within-species risk factors for SB per-
formance have been identified for some of the most
susceptible ungulates, such as giraffe [22], horses [24,25]
and pigs [26], this information remains unstudied for the
majority of ungulate species.

This study applies a cross-species theoretical framework
and novel statistical approach to study SB in ungulates, in
which both the species’ wild behavioural biology and the
study-level captive husbandry risk factors can be explored.
Based on the current literature, we derived three primary
hypotheses about risk factors for SB development in ungu-
lates, in order to create a framework for the exploratory
analysis: (1) ungulates, who display more oral and fewer
locomotor forms of SB, would have distinct ecological drivers
for SB relating to foraging, eating and processing feed and/or
would be kept in environments where these activities are sig-
nificantly restricted; (2) the disparity between a species
natural social organization and their captive conditions may
predict SB; (3) ranging and activity patterns would predict
SB (see electronic supplementary material for further infor-
mation about how these hypotheses were derived). We
tested these hypotheses by systematically reviewing studies
of SB prevalence and type for all ungulate species, alongside
information on their behavioural biology relating to (1) feed-
ing and foraging, (2) social organization and mating, and (3)
ranging and activity. Using a Bayesian statistical method, that
controlled for phylogenetic relatedness, we assessed these
potential drivers for the occurrence of SB. Previous cross-
species comparisons of captive animal welfare have used
species’ averages of welfare measures (such as SB or life
expectancy), and have therefore not been able to assess the
effects of husbandry factors. The innovative statistical
approach we apply here, which fits multi-level models in a
Bayesian framework, allows the integration of each individ-
ual SB study into analyses independently, while controlling
for phylogenetic relatedness.
2. Methods
Following seminal work with carnivores [15,16], we developed a
novel methodological approach for ungulates that explored
potential risk factors derived from a species wild behavioural
biology (adjusted to reflect ungulate biology) as well as the
current captive husbandry of the subjects within each study.

(a) Stereotypic behaviour and captive husbandry data
Owing to the relative paucity of SB research in exotic ungulates,
both SB prevalence and the proportion of time species spent per-
forming SB were initially sourced as output variables, to enable a
greater number of species to be included in analyses. SB data
from peer-reviewed journal articles and conference abstracts
were systematically collated, using the search engines EBSCO
Discovery Service and Google Scholar between October 2019
and March 2020. These generated a large number of outputs;
thus time constraints prevented the use of additional search
engines. Search phrases included all terrestrial ungulate genera,
plus terms related to stereotypic, repetitive, and abnormal beha-
viours (see electronic supplementary material for full search
phrase list). Unpublished reports, such as student theses, were
also included when encountered. The annual conference pro-
ceedings of BIAZA (1999–2017) and AZA (2017–2019) were
examined, and authors were contacted where studies were
deemed of interest but insufficient information was available.
All BIAZA accredited institutions that house ungulates, and
had an email or contact form available on their website, were
contacted for unpublished data. Sources published before 1990
were excluded, as full versions of these articles were rarely
available online. Data from domesticated species were included,
as these animals constitute the majority of captive ungulates
worldwide.

For inclusion, studies had to involve behavioural data collec-
tion over a minimum 24 h window. Ideally, this would have been
set as a longer time period; however, in practice, this would have
excluded a significant number of studies. Studies were excluded
if definitions of SB were not provided, if definitions given were
unclear, if definitions were at variance with the standard defi-
nition given in the introduction, or where the research was
deemed of generally poor quality. Where an ethogram was pro-
vided, this was searched to identify behaviours or behavioural
groups that fit the definition of SB, and data from these were
included. Data from juveniles were not used. To remove transient
novelty effects, data from animals experiencing changes to diet,
feeding, housing, husbandry, group structure or where new
enrichment protocols had been introduced were not used.
Where available, baseline data for such studies, prior to the
described modifications, were included. Sexes were pooled to
increase sample sizes. In addition, although the sex ratios of
populations were usually given, it was rarely possible to identify
which individuals were stereotypic. Variables recorded were; (1)
prevalence of SB within the study population (%), (2) type of SB
performed (oral or locomotor; there were some instances of SB
that did not fall into these two categories, however, they were
only identified in studies that did not meet inclusion criteria),
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram [27], showing the number of studies screened and included
in analyses for stereotypic behaviour (left) and wild behavioural biology (right) searches. (Online version in colour.)
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and (3) the mean proportion of activity budget (%) devoted to
performing SB by stereotyping individuals. Where studies only
examined one type of SB, oral or motor, this was recorded separ-
ately from those which looked at all SB combined. Studies that
contained no such data were excluded. A Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
flow diagram of source selection through each phase can be
seen in figure 1. A full list of the included studies and extracted
raw data are available at https://osf.io/mkcw8/.

For each study that met all inclusion criteria and contained
SB data of the required type, the following information, if
available, was also recorded:
— Where animals were housed and the year of study. This
reduced the risk of non-independent data. In cases where
the same species were observed at the same establishment
on more than one occasion, both datasets were only included
if they were collected greater than 1 year apart. If obser-
vations were separated by less than 1 year, means were
derived for each variable.

— Area (m2) of daytime enclosure. Where dimensions were not
provided for horse stables or cow tie-stalls, we used dimen-
sions reported in the academic literature for that species, in
that country, and less than one year either side of publication.
Where this was not available, enclosure area was recorded as
NA.

— Sex of observed individuals. Used to calculate the proportion
of females in the group.

— Size of daytime social group of observed animals (adults
only). Animals were considered as part of the same social
group if tactile contact was possible between them.

— Sex composition of daytime social group (adults only).
— Proportion of castrated animals.
— Feed availability. Categorized as ad libitum (animals had

feed available at all times) or in meals (animals fed at discrete
times of day, with rations not expected to last until the
following meal).

— Predominant feed type. Categorized as forage (plant material,
either unprocessed or minimally processed, e.g. grass, hay or
silage), concentrates, or both. Feed given as part of enrichment
was not included.

(b) Wild behavioural biology data
The wild behavioural biology factors used in the models came
under the general divisions of diet and feeding, social structure
and ranging and activity. Data on species’ wild/free-ranging
behavioural biology was systematically collated from peer-
reviewed journal articles, using the search engines EBSCO
Discovery Service and Google Scholar between April and
November 2020. For search protocols and inclusion criteria see
electronic supplementary material. A PRISMA flow diagram of
source selection through each phase can be seen in figure 1. A
full list of the included studies and extracted raw data are avail-
able at https://osf.io/mkcw8/. For articles remaining after
screening, the following information was recorded for the
species:

1) Foraging strategy (grazer, browser, mixed feeder, frugivore or
omnivore);

2) Time spent eating (% day);
3) Diet diversity (number of different plant genera consumed);
4) Information pertaining to social group size and composition.

Where this differed between the sexes, these were recorded
separately;

5) Mating system type (promiscuity, polygamy or polygyny).
No other mating strategies were observed in the sample;

6) Time spent active (% day);
7) Home range size (km2);
8) Distance travelled daily (km);

https://osf.io/mkcw8/
https://osf.io/mkcw8/
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9) Migration strategy (migratory, non-migratory or mixed
strategies within-study population).

Sexes were pooled in all cases, due to a paucity of sex-
segregated data. For continuous variables, median values
across studies were calculated to give overall species’ estimates.
For categorical variables, the modal response was determined.
Species’ average masses were obtained from the PanTHERIA
database [28].

(c) Captive/wild comparisons
Two additional variables were derived from the information
collected. ‘Space availability’ (range 0.0–1.0) was calculated as
the animal’s enclosure size as a proportion of its home range
size. ‘Group same as wild’ was considered ‘yes’ (Y) if the social
conditions in captivity had been observed in any of our wild
studies, taking into consideration both the number of animals
in a group and the ratio of males:females. ‘No’ (N) was recorded
if the animals were housed in social groups not observed in any
of the wild studies identified. We considered using average
group size as a predictor however, for many ungulate species,
males and females live in groups of very different sizes. An aver-
age value would therefore not be representative of either
situation. In addition, even where males and females live
together, the ratio of the two sexes in a group is rarely even.
Unless the sex ratio of a captive group reflects something similar
to that experienced in the wild, we expect that this would be
stressful to the animal. This variable was derived to avoid
these complications. We did not derive any further variables,
so as to minimize subjectivity in the dataset.

(d) Statistical analysis
Data were analysed in RSTUDIO v. 1.3.1073 [29]. Multilevel models
were fitted within a Bayesian framework as this allowed for both
phylogenetic relatedness and repeated measurements within
species to be included as random factors in analyses. Bayesian
regressions return distribution of possible effect sizes rather
than point estimates (as is the case in frequentist regression),
with the credible interval (CrI) being the range of this distri-
bution containing a particular percentage of probable values.
In this case, we use a 95% CrI. Where a CrI does not contain
zero, this suggests an effect is evident. Bayesian regressions,
therefore, have the advantage of showing uncertainty in situ-
ations where data are limited, as is the case for many species
in this study. In addition, estimates can be improved as more
data are gathered, allowing for future improvements to
regression models.

Pearson correlation coefficients between pairs of all continu-
ous predictor variables, and Cramer’s V coefficients between
pairs of all categorical predictor variables, were calculated.
Where these exceeded 0.90, only one of the variables was
included in the models to avoid multicollinearity [30]. As a
result, space availability was removed from analyses due to a
strong positive correlation (R2 = 0.94) with home range size.
Given the significance of home range size found in other species,
its inclusion was of higher importance than that of our derived
variable. Visual examination of box plots generated from all
possible pairs of continuous and categorical variables did not
reveal any associations. Body mass, a potential confounding
factor, correlated with diet diversity (R2 = 0.96) and proportion
of time spent active (R2 = 0.91). Mass was therefore controlled
for in models containing these two variables. An exploratory
model containing only body mass and our random effects
found that mass did not statistically influence SB prevalence
(95% CrI [−0.01, 0.02]). Unfortunately, it was not possible, with
the data available, to analyse prevalence of locomotor and oral
SB separately, so these were combined for SB prevalence
models. Similarly, due to lack of available data, the influence of
predictor variables on the time spent performing locomotor SB
could not be assessed. There were sufficient data, however, to
allow for exploratory modelling of the time spent performing
oral SB.

The brm function in the brms package [31,32] in RSTUDIO was
used to individually test the effect of each predictor variable on
SB prevalence and the time spent performing oral SB, using
Bayesian regression models (BRMs). Sample size and the
volume of missing data precluded the building of multi-factor
models, or the inclusion of interaction effects. SB variables
were weighted by (log) sample size. Log transformation was
used to prevent a handful of particularly large studies having
too great an influence over outcomes. Individual study and phy-
logenetic relatedness were included as random effects.
Phylogenetic relatedness was incorporated into models as a
covariance matrix. To derive this, 1000 phylogenetic trees for
the selected ungulate species were generated from vertlife.org
[33], and an average tree calculated using phytools v. 0.7–70
[34]. A covariance matrix was produced from the average tree
using ape v. 5.5 [35]. Phylogenetic information was available
for all but one species (Taurotragus oryx), which subsequently
had to be excluded from analyses. It was not possible to include
the location of stereotypic animals as a random factor, as it would
have reduced the sample size significantly (n = 62).

BRMs were fitted with a Gaussian distribution, default
priors, a maximum tree depth of 20, and an adapt delta of 0.99
(see SI appendix, supplementary text for more information on
model fitting and diagnostics). Each BRM was run for two
chains of 8000 iterations, discarding the first 1000 as warmup.
Statistical inference was determined by examining whether the
95% CrI of the population-level effect (i.e. of predictor variable
for the given model) overlapped with zero or not. If less than
10% of the total difference between upper and lower CrI was
above or below zero, the association was classified as a trend.
For categorical variables, post-hoc hypothesis testing using the
brms package identified important differences between pairs of
groups not included in the model output summary. CrIs for
pair-wise comparisons are of the distribution of the difference
of the means of the two groups, and statistical inference was
determined in the same way as population-level effects,
described above. SB prevalence models were run with (n = 95)
and without (n = 86) studies of intensively reared livestock, to
check if these skewed findings. Livestock was defined as inten-
sively reared if they were housed in pens or stalls within a
barn, with no outdoor access. Conditional effects plots were gen-
erated in brms and visualized with ggplot2 [36]. These display
model-predicted coefficients with 95% CrIs.
3. Results
Our final dataset of 96 captive animal studies represented 15
263 individuals across 38 species (figure 2). Owing to missing
data, no models contained all 96 studies and 38 species. The
full list of effect estimates with 95% CrI of risk factors for SB
prevalence and proportion of time spent performing oral SB,
using categorical and continuous predictor variables, are
presented in electronic supplementary material, tables
S1–S4. This includes the number of studies included in each
model and in each group for categorical variables.
(a) Stereotypic behaviour prevalence
Of the wild behavioural biology variables associated with
diet and feeding, feeding strategy was found to be predictive
of SB prevalence, with browsers and mixed feeders both
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exhibiting a higher prevalence than grazers (figure 3; elec-
tronic supplementary material, table S1). There was a trend
toward omnivores having a greater SB prevalence than gra-
zers, but this appears to have been driven by intensively
reared livestock because this trend disappeared following
their exclusion from the model (electronic supplementary
material, table S1). With intensively reared livestock removed
from analyses, in addition to the differences identified in the
full model, browsers were found to have a greater prevalence
of SB than mixed strategy feeders and omnivores. The pro-
portion of time spent eating and diet diversity did not
predict SB (electronic supplementary material, table S2). Of
the variables related to husbandry, SB prevalence was
higher in animals fed in discrete meals as opposed to ad libi-
tum, and in those fed concentrates rather than a forage or a
mixed concentrate plus forage diet (figure 3; electronic sup-
plementary material, table S1). Even without the influence
of intensively reared livestock, trends toward greater SB in
those fed meals, and those fed entirely concentrates rather
than forage, were still evident (electronic supplementary
material, table S1).

Of the social factors explored, wild mating strategy was
found to influence SB (figure 3; electronic supplementary
material, table S1). Promiscuous species had a greater preva-
lence of SB than polygynous ungulates, and this difference
remained when intensively reared livestock were removed
from the model (electronic supplementary material, table
S1). Whether social groups in captivity were similar to
those the species experienced in the wild, the proportion of
castrated animals in a group, and the proportion of females,
did not play a role (electronic supplementary material,
tables S1 and S2). When intensively reared livestock were
removed from the model, a positive correlation between the
proportion of animals castrated and SB prevalence became
evident, as did a trend toward a negative correlation between
the proportion of females in a group and SB prevalence
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(electronic supplementary material, table S2). Regarding ran-
ging and movement, enclosure size, proportion of the day
spent active in the wild, home range size, migratory strategy
and daily travel distance did not influence SB (electronic
supplementary material, tables S1 and S2).
(b) Proportion of time spent performing oral stereotypic
behaviour

Owing to the paucity of reporting in the majority of studies,
analyses on time spent performing oral SB were undertaken on
small samples, and the number of species included in a given
model ranged from three to seven. For categorical variables,
some of the groups present in SB prevalence models were
not represented, and some groups were represented by just
one data point (see electronic supplementary material, table
S3, SI Appendix for more information regarding data distri-
bution for these models). We also did not run analyses
without intensively reared livestock, as the resulting species
sample size would have been too small (n = 4) for meaningful
interpretation. Results here should therefore be considered
exploratory.

Of the wild behavioural biology variables associated with
diet and feeding, feeding strategy was predictive of time spent
performing oral SB, with omnivores performing more SB than
browsers, grazers and mixed strategy feeders (electronic sup-
plementary material, table S3). There was also a strong trend
toward a positive correlation between diet diversity and time
spent performing oral SB (electronic supplementary material,
table S4). Of the variables related to captive husbandry, oral
SB performance was greater in animals fed concentrates com-
pared to a forage or a mixed concentrate plus forage diet
(electronic supplementary material, table S3). Proportion of
time spent eating in the wild, captive feed availability, and
all variables associated with sociality and ranging and move-
ment were not predictive of oral SB (electronic supplementary
material, tables S3 and S4).
4. Discussion
This work applied a novel statistical approach to study SB in
ungulates. Cross-species comparisons of captive animal
welfare have, until now, used species’ averages of welfare
measures (such as SB or life expectancy), and have therefore
not been able to control for or assess the effects of husbandry
factors. By fitting multi-level models in a Bayesian frame-
work, however, we were able to integrate each individual
SB study into analyses independently. This innovative
approach allowed for husbandry factors to be accounted for
when examining species-level risk factors and data on
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individual animals to be included in the analyses. This
approach offers the potential for understanding the intrinsic
species-level risk factors for reduced welfare to an extent
not previously possible.

Our data suggest that features of both a species wild be-
havioural biology and captive husbandry are predictive of SB
prevalence in ungulates, with factors falling across two of the
three areas we examined: diet and feeding, and social factors.
Important predictors of SB prevalence within diet and feed-
ing were feeding strategy in the wild and feed type and
availability in captivity. The important social factor was
mating strategy in the wild, with the proportion of castrated
animals and the proportion of females in a group also pre-
dicting SB in models without the presence of intensively
reared livestock. None of our ranging and movement factors
were predictive of SB. Previous comparable work with carni-
vores found that factors exclusively relating to ranging (home
range size and daily travel distance) were the key predictors
of SB, with factors relating to natural foraging being non-sig-
nificant [12,13]. This highlights the importance of assessing
SB risk factors within each clade. In carnivores, as well as
in primates [14], pacing SB was predicted by ranging behav-
iour. Pacing is rare in ungulates, with oral SB being more
common, confirming that locomotor and oral SB are likely
to have different causal mechanisms. Indeed, our exploratory
analyses suggest that feeding factors specifically are predictive
of time spent performing oral SB.

Taking each SB driver in turn, within the area of diet and
feeding there was a higher prevalence of SB in browsing
species and mixed feeders than in grazers. Both differences
remained when studies of intensively reared livestock were
removed from the model, indicating the effect was not
being biased by their presence. Browsing ungulates have
highly specialized feeding behaviours to crop forage and
negotiate thorns and spines selectively [37]. In addition,
during foraging, browsers spend less time ingesting feed
than grazers and are required to locate and move between
patches, due to the differences in food dispersion [38]. Etho-
logical theories suggest that animals are highly motivated to
perform behaviour patterns such as these, and may become
frustrated and develop SB when attempts to execute them
are thwarted [1]. Replicating the behavioural needs of brow-
sers in captivity, however, is challenging [39,40]. Fresh browse
is often replaced with hay and concentrated grain [22], and
mimicking the patch distribution of food sources within the
confines of an enclosure is difficult. Browsers may therefore
use SB as a behavioural alternative where they are unable
to fulfil the behavioural motivation to search for and/or con-
sume woody plants. A further feature of browse as a feed
source is that it typically occurs in clusters, with ingestion
of one cluster potentially stimulating further local food-
search behaviour via positive feedback [40]. This will further
enhance the behavioural need to browse, which if thwarted
may increase the likelihood of SB. Foraging also has functions
beyond nutrient intake, playing an important role in main-
taining optimal oral and gastrointestinal health [41].
Browsing species, who arguably have the most specialized
oral physiology, and face the greatest restrictions on their
ingestive and digestive behaviours, are most at risk of
reduced health and welfare. Indeed, ruminant species with
a natural diet high in browse have a reduced life expectancy
(another marker of reduced welfare) in captivity [16],
highlighting the importance of meeting the dietary and
behavioural feeding needs of browsing animals to improve
wellbeing. Providing captive browsing animals with a diet
high in fresh browse, alongside the use of enrichment that
encourages natural browsing behaviour, is therefore essential
for maintaining high welfare. However, it is not completely
clear the extent to which adding fresh browse is beneficial
to welfare for all ungulates, as in some cases providing
additional fresh browse substrate has been shown
to increase SB [42]. By contrast, meeting the dietary and
ingestive behavioural needs of grazing species is much sim-
pler as grass species are readily available and easy to
maintain, and hay provides a more similar replacement
when fresh grass is not available, which may explain the
lower rates of SB in these species.

Feed type and availability were also predictive of SB, with
higher SB rates in those fed concentrates, and in those fed in
discrete meals as opposed to ad libitum. The differences were
still evident, but became less distinct, when intensively reared
livestock were removed from models. This provides a good
indication that these studies were not solely responsible for
the differences seen, however, it is worth noting that only
one study of animals fed entirely concentrates remained
once livestock was excluded. Meal feeding is often associated
with high concentrate diets, however, no strong association
between feed type and feed availability was identified prior
to modelling. Our data highlight that forage is regularly sup-
plied at discrete time points, rather than ad libitum. It is
therefore important to consider feed type and feed-avail-
ability separately when considering welfare. Both factors
have been linked previously to SB in specific ungulate
species, including horses [24,25,43], pigs and cattle (Bos
taurus) [44] and giraffe and okapi [22]. The inter-species
approach undertaken here indicates that providing access to
ad libitum forage reduces the risk of SB across ungulate
species. Given that oral SBs are the most prevalent type of
SB in ungulates, and that feeding is frequently suggested to
be associated with their performance, it was surprising that
time spent eating in the wild did not correlate with SB preva-
lence [1]. Although strategies to increase the amount of time
spent foraging, eating or processing feed have successfully
reduced SB performance across a wide range of ungulate
species—for example, sheep (Ovis aries) [45], cattle [46–48]
and giraffe [49,50]—such interventions are not always suc-
cessful [42,51–55]. Given this variability in success, perhaps
it is not the increase in time feeding per se that confers the
beneficial effect, but rather some other aspect of the interven-
tions. It is also important to note that measures of feeding
time rarely include the time spent moving between food
patches when browsing or the time spent ruminating, and
as such may not be the best overall measure of time spent
processing food. Exploratory analyses of time spent perform-
ing oral SB further suggest that feeding strategy in the wild
and feed type in captivity are specifically predictive of oral
SB. Although sample sizes for these models were small
(11≤ n≥ 21), representing between three and seven species,
these results provide an initial indication that feeding factors
may play a role in oral SB development in ungulates; how-
ever, more data are needed before conclusions can be drawn.

In terms of social factors, promiscuous species had a
higher prevalence of SB than polygynous species, with this
effect remaining when intensively reared livestock was
removed from the model. In captivity, mating and breeding
are regularly controlled, with partners almost always selected
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based on human management, and in many instances ani-
mals of different sexes may never actually meet, yet the
effects of these manipulations on welfare are rarely explored.
Offering animals choice and control over their environment is
considered integral in optimizing their welfare [56]. This may
be overlooked in the context of mating and could be an
important factor leading to the exhibition SB in captive ungu-
lates. It follows that promiscuous species, who choose new
partners most frequently, experience the greatest degree of
restriction in captivity, relative to behavioural needs,
and are therefore more likely to develop SB as a result. In cap-
tive ruminants, monogamous males demonstrate a greater
life expectancy than polygamous males [16], further indicat-
ing that having an increased number of partners in the wild
is a risk factor for reduced welfare in captivity. Allowing
mate-choice in captive breeding programmes has already
been proposed as a method for improving reproductive suc-
cess [57,58], and our data suggest that it may also reduce the
likelihood of SB, thus improving welfare. Indeed, highly
stereotypic mink are less successful in mate choice tests
[59], indicating that perhaps promiscuous ungulates are
caught in a positive feedback loop, whereby they perform
SB due to behavioural mating frustration, but by doing so
reduce their reproductive success. Identifying mating
system as a predictive factor for SB also highlights the impor-
tance of internal cues in eliciting a stereotypic response.
Although a large proportion of SBs appears to be anticipatory
(i.e. elicited by cues denoting imminent food or access to con-
specifics), many SBs occur spontaneously, independent of
these events, suggesting that their manifestation reflects a
change in the animal’s internal state [41]. These putative
interoceptive cues are elusive, but are often attributed to
the motivation and restricted performance of other species-
specific behavioural needs [41]. The data here suggest that
reproductive drives are a strong candidate for the motiva-
tional origin of cue-independent SB in ungulates. That
mating system was not predictive of time spent performing
oral SB in our exploratory analyses suggests that, in ungu-
lates, it may be locomotory forms of SB that are cue-
independent, although more data are needed to confirm if
this is the case.

By contrast to our mating system results, deviations from
species’ wild social organization when in captivity did not
influence SB, despite group size being a risk factor for SB in
primates [14], and previous work in ungulates suggesting
social factors have been linked to the risk of SB development.
For example, in giraffe and okapi, who are naturally solitary
or live in small unstable groups, access to conspecifics at
night increases stereotypic licking [22] whereas contact with
conspecifics reduces the risk of performing SB in horses
(which form long-term social bonds) [60]. In our study, the
definition of two captive animals being part of the same
social group was if tactile interaction was possible between
them. Previous work in individually housed ungulates, how-
ever, has demonstrated that visual access to conspecifics can
also significantly reduce performance of SB in social species
[60,61]. Lack of tactile interactions may therefore not play a
large role in SB development if visual access is possible.

Interestingly, the proportion of castrated animals and the
proportion of females in a group did not correlate with SB
prevalence in full models. However, effects were seen with
the exclusion of intensively reared livestock, where there
was a positive correlation between castration proportion
and SB, and a trend toward a negative correlation between
proportion of females and SB. Six of the nine intensive live-
stock studies removed were populations of 100% females,
none of which were castrated, all of which had a high SB
prevalence, and therefore had a large influence on model out-
comes. Previous studies that have identified a relationship
between castration and SB in horses have been contradictory
[62–64], and indicate that the extreme husbandry and social
isolation experienced by the majority of stallions (non-
castrated male horses) may be masking castration effects.
Our cross-species analyses suggest that castration increases
the risk of developing SB. Castration is a painful and stressful
event in the life of a young animal [65]. Other stressful early
life events, such as weaning and maternal deprivation, have
been associated with SB [66,67]. It follows that castration
may have a similar effect, and further multi-species studies
of early life effects on SB would be useful. The finding that
social groups with a higher proportion of females tended
toward having a lower prevalence of SB may not be comple-
tely independent of the effect of castration, given that it is
usually males that are castrated, and that non-castrated
males are often housed in isolating environments. It was
not possible to include multiple independent variables in
our analyses, however, as we expand our dataset going for-
ward, it should become possible to disentangle the effects
of sex and castration.

None of the ranging and movement factors examined
influenced SB, despite levels of SB being significantly pre-
dicted by home range size in carnivores [12,13], and by
daily journey length in primates [14]. Although some ungu-
lates have a large annual home range, home ranges usually
overlap [68] and movement usually occurs as a slow drift
in location during foraging activity rather than as purposeful
travel [69]. As directed travel across their home range is not
required by most ungulate species, it follows that ungulates
may not have an innate need to locomote long distances,
thus large home range sizes are not a driver for SB.
(a) Study limitations and future directions
We acknowledge several limitations for this study, many of
which were the inevitable result of the paucity of detail pro-
vided in the datasets we interrogated. First, we pooled
diverse forms of SB despite evidence from several species
suggesting that different forms of SB do not share the same
aetiology [14,17,70]. Although we set out to analyse oral
and locomotor forms separately, the vast majority of pub-
lished SB prevalence data do not separate the two forms,
meaning resulting sample sizes were insufficient for the gen-
eration of robust models, and only preliminary analysis of
oral SB data could be performed. Previous cross-species ana-
lyses of SB in other clades have identified heterogeneity in the
causal mechanisms of different types of SB. In primates, daily
travel distance in the wild predicted route tracing, whereas
natural group size correlated with fur-plucking SB [14]. The
effect of home range size in carnivores was greater for route
tracing SBs than for all SB forms combined, suggesting that
non-route tracing SBs have different drivers [70]. In captive
parrots, diet specifically predicted feather-damaging SBs,
yet having a larger brain size was associated with oral SB
overall and with whole body SB [17]. It is therefore probable
that similar differences in aetiology exist between the types of
SB in ungulates. Expansion of the ungulate dataset in the
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future with more complete records, will hopefully allow the
exploration of the causal mechanisms of the diverse forms
of SB separately for this clade.

For similar reasons, pooling of sexes was unavoidable
with the data available. Males and females differ both physio-
logically and behaviourally and are thus impacted by
captivity in disparate ways [71]. As more data become avail-
able, analyses should aim to identify the differences in SB
drivers between the two sexes. The statistical methods
described in this paper would allow such analyses. A further
issue was the volume of missing data across both captive
environment and wild behavioural biological predictors.
This prevented the generation of models containing multiple
predictor variables and interaction effects, which would
have allowed us to explore the interface between captive
environment and wild behavioural biology factors in the
development of SB.

It is also important to note that, for some species, sample
sizes were very small and this could be considered to be a
limitation of the study. However, the benefit of modelling
within a Bayesian, rather than frequentist, framework is
that it is capable of handling small sample sizes. In addition,
analyses were weighted by sample size to ensure these small
studies were not overly influential. Given the dearth of
SB data available for the majority of ungulate species,
non-inclusion of these small studies would have vastly
reduced the number of species in analyses and reduced the
generalizability of outcomes.

Finally, future research could also profitably extend the
number of predictor variables explored. For some potential
risk factors (such as territoriality, time spent engaged in
social behaviour and weaning age) there were simply insuffi-
cient data available. Physical enrichment is commonly used
to prevent or reduce SB and it would have been beneficial
to include data on this in analyses although it is arguably
impossible to systematically and fairly categorize physical
enrichment in ungulates. For grazing species, for example,
living in a large grass pasture is highly enriching in itself,
but would not be categorized as an enrichment device or as
a complex environment. Indeed, enrichment is (relative to
carnivores and primates [72]) rarely provided for ungulates,
except for those kept in highly confined conditions such as
production animals (e.g. pigs kept in the EU [73]) and some
zoo animals (e.g. giraffe [74]). With a larger, more complete,
sample, multiple-predictor models would potentially circum-
vent such contradictions. An outline of the desired attributes
of a zoo or livestock study, in order to allow more effective
inter- and intra-species comparisons in the future, can be
found in electronic supplementary material, table S5.
5. Conclusion
There is still much to be understood regarding the drivers of
SB in captive ungulates and, with the addition of extra data,
future studies using our ungulate model could explore, in
depth, the potential differences in the motivational drivers
between oral and locomotor SB. Given the contrast between
the results of our study and those investigating carnivores
and primates, exploring these differences in drivers remains
an important avenue for future research.
Using our approach, it is now possible to use captive hus-
bandry and wild behavioural biological predictors of SB to
determine the likelihood of an ungulate species developing
SB, even when there is a lack of empirical evidence for that
species. Our results raise concerns about the suitability of cer-
tain ungulate species for captivity and suggest that current
captive environments are not able to accommodate the be-
havioural needs of promiscuous and browsing species.
From our dataset, okapi, giraffe, black rhino, camel and dom-
estic pigs are some of the species at highest risk of SB,
however it is also important to consider the welfare of brows-
ing and promiscuous species that are understudied and thus
not represented in our study. Knowing which species are at
high risk, it would be beneficial for collections to focus on
species at lower risk of SB in order to promote good welfare,
such as southern white rhino, Sable’s antelope or common
wildebeest. Where browsing species are already housed in
captivity, the use of targeted environmental enrichment,
which encourages the specialized feeding behaviours of the
species and allows for movement between food patches, is
essential for improving welfare. Identification of the risk fac-
tors associated with captive husbandry also provides
practical insight into strategies to reduce SB and improve
the welfare of captive ungulates, by providing low concen-
trate, high forage diets with ad libitum access to feed
substrates. For species identified as at high risk, there needs
to be a real effort to understand how we can better meet
the needs of these species in captivity via targeted husbandry,
enclosure design, environmental enrichment and modifi-
cation of breeding programmes. This study also identified
gaps in ungulate SB research that, if carried out, would
greatly increase the robustness of the statistical model. In
particular, there needs to be greater documentation of the
epidemiology of locomotory SB in a range of captive
ungulate species.

More broadly, our statistical approach provides a method-
ology for future cross-species comparisons of markers of poor
(or good) welfare, that can incorporate analyses of species-
level and study/individual-level risk factors and can be
used in a wide range of welfare and conservation contexts.
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